
The Record-Breaking Heat Wave in 2016 over South Korea and Its Physical Mechanism
Author(s) -
SangWook Yeh,
You-Jin Won,
JinSil Hong,
Kangjin Lee,
Min Serk Kwon,
KyongHwan Seo,
YooGeun Ham
Publication year - 2018
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-17-0205.1
Subject(s) - geopotential height , peninsula , teleconnection , climatology , geopotential , subtropical ridge , geology , convection , forcing (mathematics) , atmospheric sciences , precipitation , meteorology , geography , el niño southern oscillation , archaeology
It is important to understand the dynamical processes that cause heat waves at regional scales. This study examined the physical mechanism that was responsible for a heat wave in South Korea in August 2016. Unlike previous August heat waves over the Korean Peninsula, the intensity of the geopotential height over the Kamchatka Peninsula in August 2016 was the strongest since 1979, which acted as an atmospheric blocking in the downstream region of the Korean Peninsula. Therefore, the anomalous high geopotential height in Mongolia, where the surface temperature was quite high, was observed persistently in August 2016. This anomalous high in Mongolia induced northerly winds with warm temperatures onto the Korean Peninsula, which contributed to a heat wave in August 2016. We further showed that the anomalous high geopotential height over the Kamchatka Peninsula in August 2016 was triggered by strong convection in the western-to-central subtropical Pacific through atmospheric teleconnections, which was quite different from a typical heat wave over the Korean Peninsula, in which convective forcing around the South China Sea is strong. This implies that convective forcing in the subtropical Pacific should also be monitored to predict heat wave events in East Asia, including South Korea. On the other hand, the zonal wave train associated with the circumglobal teleconnection pattern is also associated with the anomalous high geopotential height around Mongolia and the Kamchatka Peninsula, which may have contributed to the heat wave in August 2016.