z-logo
open-access-imgOpen Access
The 23–26 September 2012 U.K. Floods: Using PV Surgery to Quantify Sensitivity to Upper-Level Forcing
Author(s) -
Sam Hardy,
David M. Schultz,
G. Vaughan
Publication year - 2017
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-16-0434.1
Subject(s) - anomaly (physics) , extratropical cyclone , climatology , cyclone (programming language) , forcing (mathematics) , geology , trough (economics) , environmental science , meteorology , atmospheric sciences , geography , physics , condensed matter physics , field programmable gate array , computer science , computer hardware , economics , macroeconomics
Major river flooding affected the United Kingdom in late September 2012 as a slow-moving extratropical cyclone brought over 150 mm of rain to parts of northern England and north Wales. The cyclone deepened over the United Kingdom on 24–26 September as a potential vorticity (PV) anomaly approached from the northwest, elongated into a PV streamer, and wrapped around the cyclone. The strength and position of the PV anomaly is modified in the initial conditions of Weather Research and Forecasting Model simulations, using PV surgery, to examine whether different upper-level forcing, or different phasing between the PV anomaly and cyclone, could have produced an even more extreme event. These simulations reveal that quasigeostrophic (QG) forcing for ascent ahead of the anomaly contributed to the persistence of the rainfall over the United Kingdom. Moreover, weakening the anomaly resulted in lower rainfall accumulations across the United Kingdom, suggesting that the impact of the event might be proportional to the strength of the upper-level QG forcing. However, when the anomaly was strengthened, it rotated cyclonically around a large-scale trough over Iceland rather than moving eastward as in the verifying analysis, with strongly reduced accumulated rainfall across the United Kingdom. A similar evolution developed when the anomaly was moved farther away from the cyclone. Conversely, moving the anomaly nearer to the cyclone produced a similar solution to the verifying analysis, with slightly increased rainfall totals. These counterintuitive results suggest that the verifying analysis represented almost the highest-impact scenario possible for this flooding event when accounting for sensitivity to the initial position and strength of the PV anomaly.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here