z-logo
open-access-imgOpen Access
Airborne Radar Observations of Lake-Effect Snowbands over the New York Finger Lakes
Author(s) -
Philip T. Bergmaier,
Bart Geerts
Publication year - 2016
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-16-0103.1
Subject(s) - snow , geology , radar , shelf ice , lidar , environmental science , hydrology (agriculture) , oceanography , remote sensing , geomorphology , ice stream , sea ice , cryosphere , telecommunications , geotechnical engineering , computer science
The vast majority of lake-effect snow research throughout the years has focused on the North American Great Lakes since they are often associated with strong lake-effect events that produce heavy downstream snowfall. This study investigates a lake-effect snow event that instead occurred over two smaller lakes, the New York Finger Lakes, which are just O(5) km wide and O(50) km long. A pair of well-defined snowbands that formed over Seneca and Cayuga Lakes, the two largest of the Finger Lakes, were sampled from above by a vertically pointing Doppler radar and lidar on board the University of Wyoming King Air (UWKA). With typical widths matching the widths of the lakes, and depths of less than 1000 m, the long-lake-axis-parallel bands were actually quite intense for their size. For example, updrafts of 2–3 m s −1 or greater within the band cores were common, and reflectivity occasionally exceeded 5 dBZ. Airborne dual-Doppler data show that both bands were sometimes accompanied by a well-defined thermally driven secondary circulation. Lidar data reveal that the Cayuga Lake band contained significantly more liquid water than the band over Seneca Lake, which was composed mainly of ice. Dissipating lake-effect ice clouds, carried downstream from Lake Ontario toward Seneca Lake, likely seeded the emerging convection over Seneca Lake, resulting in an accelerated depletion of liquid in the Seneca Lake band via more efficient snow growth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here