z-logo
open-access-imgOpen Access
Tropical Transition of an Unnamed, High-Latitude, Tropical Cyclone over the Eastern North Pacific
Author(s) -
Alicia M. Bentley,
Nicholas D. Metz
Publication year - 2016
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-15-0213.1
Subject(s) - extratropical cyclone , climatology , tropical cyclone , cyclone (programming language) , middle latitudes , troposphere , sea surface temperature , geology , rainband , tropical cyclone scales , cyclogenesis , environmental science , oceanography , atmospheric sciences , field programmable gate array , computer science , computer hardware
In early November 2006, an unnamed tropical cyclone (TC) formed via the tropical transition (TT) process at 42°N over the eastern North Pacific. An extratropical cyclone (EC), developing downstream of a thinning upper-tropospheric trough over the eastern North Pacific, served as the precursor disturbance that would ultimately undergo TT. The TT of the unnamed TC was extremely unusual—occurring over ~16°C sea surface temperatures in a portion of the eastern North Pacific basin historically devoid of TC activity. This paper 1) identifies the upper- and lower-tropospheric features linked to the formation of the EC that transitions into the unnamed TC, 2) provides a synoptic overview of the features and processes associated with the unnamed TC’s TT, and 3) discusses the landfall of the weakening cyclone along the west coast of North America. As observed in previous studies of TT, the precursor EC progresses through the life cycle of a marine extratropical frontal cyclone, developing a bent-back warm front on its northern and western sides and undergoing a warm seclusion process. Backward air parcel trajectories suggest that air parcels isolated in the center of the transitioning cyclone were warmed in the lower troposphere via sensible heating from the underlying sea surface. Vertical cross sections taken through the center of the cyclone during its life cycle reveal its transformation from an asymmetric, cold-core, EC into an axisymmetric, warm-core, TC during TT. Ensemble reforecasts initialized after TT highlight the relatively low forecast skill associated with the landfall of the weakening cyclone.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here