
A Multiscale Variational Data Assimilation Scheme: Formulation and Illustration
Author(s) -
Zhijin Li,
James C. McWilliams,
Kayo Ide,
John D. Farrara
Publication year - 2015
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-14-00384.1
Subject(s) - data assimilation , decorrelation , covariance , covariance function , algorithm , computer science , data set , remote sensing , mathematics , mathematical optimization , covariance matrix , meteorology , statistics , artificial intelligence , geology , physics
A multiscale data assimilation (MS-DA) scheme is formulated for fine-resolution models. A decomposition of the cost function is derived for a set of distinct spatial scales. The decomposed cost function allows for the background error covariance to be estimated separately for the distinct spatial scales, and multi-decorrelation scales to be explicitly incorporated in the background error covariance. MS-DA minimizes the partitioned cost functions sequentially from large to small scales. The multi-decorrelation length scale background error covariance enhances the spreading of sparse observations and prevents fine structures in high-resolution observations from being overly smoothed. The decomposition of the cost function also provides an avenue for mitigating the effects of scale aliasing and representativeness errors that inherently exist in a multiscale system, thus further improving the effectiveness of the assimilation of high-resolution observations. A set of one-dimensional experiments is performed to examine the properties of the MS-DA scheme. Emphasis is placed on the assimilation of patchy high-resolution observations representing radar and satellite measurements, alongside sparse observations representing those from conventional in situ platforms. The results illustrate how MS-DA improves the effectiveness of the assimilation of both these types of observations simultaneously.