z-logo
open-access-imgOpen Access
Concurrent Sensitivities of an Idealized Deep Convective Storm to Parameterization of Microphysics, Horizontal Grid Resolution, and Environmental Static Stability
Author(s) -
Hugh Morrison,
Annareli Morales,
Cecille Villanueva-Birriel
Publication year - 2015
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-14-00271.1
Subject(s) - convective available potential energy , environmental science , convection , precipitation , atmospheric sciences , convective storm detection , storm , depth sounding , mass flux , longitudinal static stability , meteorology , atmospheric instability , condensation , potential temperature , climatology , geology , physics , mechanics , wind speed , oceanography , aerodynamics
This study investigated the sensitivity of idealized deep convective storm simulations to microphysics parameterization, horizontal grid spacing (Δx), and environmental static stability. Three different bulk microphysics schemes in the Weather Research and Forecasting Model were tested for Δx between 0.125 and 2 km and three different environmental soundings, modified by altering static stability above 5 km. Horizontally and temporally averaged condensation and surface precipitation rates and convective updraft mass flux were sensitive to microphysics scheme and Δx for all environmental soundings. Microphysical sensitivities were similar for 0.125 < Δx < 1 km, but they varied for different soundings. Sensitivities of these quantities to Δx were less robust and varied with microphysics scheme. Other statistical convective characteristics, such as the mean updraft width and strength, exhibited similar sensitivities to Δx for all of the microphysics schemes. Microphysical sensitivities were primarily attributed to interactions between microphysics, cold pools, and dynamics that affected the spatial coverage of convective updrafts and hence the horizontally averaged convective mass flux, condensation rate, and surface precipitation. However, these linkages were less clear for the lowest convective available potential energy (CAPE) sounding, and in this case other mechanisms compensated to give a similar spatial coverage of convective updrafts even in simulations without a cold pool. For higher CAPE, there was considerable production of rimed ice from all of the microphysics schemes and its assumed characteristics, especially the fall speed, were important in explaining sensitivity via microphysical impacts on the cold pool. These results highlight the need for continued improvement in representing the production of rimed ice and its characteristics in microphysics scheme

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here