
Diagnostics for an Extreme Rain Event near Shanghai during the Landfall of Typhoon Fitow (2013)
Author(s) -
Xianwen Bao,
Noel E. Davidson,
Hui Yu,
Mai C. N. Hankinson,
Zhian Sun,
L. Rikus,
Jianyong Liu,
Zifeng Yu,
Dingrong Wu
Publication year - 2015
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-14-00241.1
Subject(s) - typhoon , climatology , trough (economics) , rainband , cold front , inflow , environmental science , warm front , precipitation , frontogenesis , wind shear , airflow , geology , atmospheric sciences , tropical cyclone , meteorology , mesoscale meteorology , wind speed , oceanography , geography , mechanical engineering , engineering , economics , macroeconomics
Typhoon Fitow made landfall south of Shanghai, China, on 6 October 2013. During the following two days, precipitation in excess of 300 mm day−1 occurred 400 km to the north of the typhoon center. The rain-producing systems included (i) outward-spiraling rainbands, which developed in the storm’s north sector in favorable environmental wind shear, and (ii) frontal cloud as a result of coastal frontogenesis. Over the rain area, in addition to enhanced ascent, there were increases in low-level moisture, convective instability, and midlevel relative vorticity. There is evidence of a preconditioning period prior to the rain when midlevel subsidence and boundary layer moistening occurred. From analysis of low-level equivalent potential temperature the following observations were made: (i) after landfall, a cold, dry airstream wrapped into Fitow’s circulation from the north, limiting the inner-core rainfall and producing a cold-air boundary, and (ii) an extended warm, moist airstream from the east converged with the cold-air intrusion over the rain area. The heavy rain occurred as the large-scale flow reorganized. Major anticyclones developed over China and the North Pacific. At upper levels, a large-amplitude trough relocated over central China with the entrance to a southwesterly jet positioned near Shanghai. Back trajectories from the rain area indicate that four environmental interactions developed: (i) increasing midlevel injection of moist potential vorticity (PV) from Fitow’s circulation; (ii) low-level warm, moist inflow from the east; (iii) midlevel inflow from nearby Typhoon Danas; and (iv) decreasing mid- to upper-level injection of PV from the midlatitude trough. The authors propose that the resultant PV structure change provided a very favorable environment for the development of rain systems.