z-logo
open-access-imgOpen Access
Spectral Transformation Using a Cubed-Sphere Grid for a Three-Dimensional Variational Data Assimilation System
Author(s) -
HyoJong Song,
InHyuk Kwon
Publication year - 2015
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-14-00089.1
Subject(s) - data assimilation , grid , spectral element method , mathematics , transformation (genetics) , atmospheric model , meteorology , algorithm , mathematical analysis , finite element method , geometry , physics , biochemistry , chemistry , gene , thermodynamics , extended finite element method
Atmospheric numerical models using the spectral element method with cubed-sphere grids (CSGs) are highly scalable in terms of parallelization. However, there are no data assimilation systems for spectral element numerical models. The authors devised a spectral transformation method applicable to the model data on a CSG (STCS) for a three-dimensional variational data assimilation system (3DVAR). To evaluate the 3DVAR system based on the STCS, the authors conducted observing system simulation experiments (OSSEs) using Community Atmosphere Model with Spectral Element dynamical core (CAM-SE). They observed root-mean-squared error reductions: 24% and 34% for zonal and meridional winds (U and V), respectively; 20% for temperature (T); 4% for specific humidity (Q); and 57% for surface pressure (Ps) in analysis and 28% and 27% for U and V, respectively; 25% for T; 21% for Q; and 31% for Ps in 72-h forecast fields. In this paper, under the premise that the same number of grid points is set, the authors show that the use of a greater polynomial degree, np, produces better performance than use of a greater element count, ne, on equiangular coordinates in terms of the wave representation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here