z-logo
open-access-imgOpen Access
Ensemble Sensitivity Analysis Applied to a Southern Plains Convective Event
Author(s) -
Christopher N. Bednarczyk,
Brian C. Ancell
Publication year - 2015
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-13-00321.1
Subject(s) - weather research and forecasting model , convection , climatology , metric (unit) , precipitation , meteorology , quantitative precipitation forecast , sensitivity (control systems) , environmental science , ensemble kalman filter , event (particle physics) , geology , mathematics , kalman filter , geography , statistics , physics , operations management , quantum mechanics , electronic engineering , engineering , economics , extended kalman filter
Forecast sensitivity of an April 2012 severe convection event in northern Texas is investigated with a high-resolution Weather Research and Forecasting (WRF) Model–based ensemble Kalman filter (EnKF). Through ensemble sensitivity analysis (ESA), which relates a forecast metric to initial and early forecast errors by linear regression, features of the flow are revealed that reflect dynamical relationships with the forecast convection. Results indicate that ESA can be successfully applied to high-resolution forecasts of convection, and the most important features are related to the synoptic-scale flow such as positioning of an upper-level low and lower-level thermodynamic characteristics of air masses. Comparisons of the maximum and minimum convectively active members in the region of interest show that the fields generated by ESA are consistent with the actual evolution of the event: members with more eastward progression of the synoptic-scale system produced a stronger convection forecast. The forecast metric of interest is modified in several ways to further evaluate the strength of the results of the sensitivity analysis. Three different variables acting as convection proxies (reflectivity, vertical velocity, and precipitation) are tested along with changing the location of the forecast metric and its spatial size. These additional tests highlight the same synoptic features of the flow with the only major differences reflecting the importance of magnitude versus position of the convective forecast.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here