z-logo
open-access-imgOpen Access
Numerical Simulations and Observations of Airflow through the ‘Alenuihāhā Channel, Hawaii
Author(s) -
David Eugene Hitzl,
Yi-Leng Chen,
Hiep Van Nguyen
Publication year - 2014
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-13-00312.1
Subject(s) - hydraulic jump , froude number , airflow , supercritical flow , geology , outflow , channel (broadcasting) , meteorology , atmospheric sciences , environmental science , flow (mathematics) , mechanics , physics , oceanography , engineering , electrical engineering , thermodynamics
During the summer, sustained winds in the ‘Alenuihāhā Channel, Hawaii, may exceed 20 m s−1 with higher gusts. The Advanced Research Weather Research and Forecasting model is used to diagnose airflow in the Hawaiian coastal waters. High-resolution (2 km) runs are performed for July 2005 covering the ‘Alenuihāhā Channel and nested in a 6-km state domain. Under normal trade wind conditions (7–8 m s−1), winds at the channel entrance are 1–2 m s−1 faster than upstream due to the convergence of the deflected airflows by the islands of Maui and Hawaii, and accelerate through the channel due to along-gap pressure gradients and lower pressure in the wakes of both islands. The acceleration is accompanied by descending airflow (>9 cm s−1) in the exit region with lowering of the trade wind inversion. Deceleration occurs downstream of the channel exit with a rapid change from sinking motion to rising motion (>3 cm s−1). Under normal or strong trade wind conditions, the flow is subcritical [Froude number (Fr) < 1] upstream of the channel, supercritical (Fr > 1) in the exit region, and subcritical again (Fr < 1) downstream with a weak hydraulic jump. The localized sinking motion on the lee side of bordering ridgelines (>1 m s−1) is most significant in the afternoon hours and results in warming and lowering of surface pressure on the lee side, into the channel, and farther downstream. As a result, the channel winds and the wind speed maximum along the southeastern coast of Maui exhibit an afternoon maximum.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here