z-logo
open-access-imgOpen Access
The Impact of Increased Frequency of Rawinsonde Observations on Forecast Skill Investigated with an Observing System Simulation Experiment
Author(s) -
Nikki C. Privé,
Ronald M. Errico,
King-Sheng Tai
Publication year - 2014
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-13-00237.1
Subject(s) - radiosonde , environmental science , meteorology , climatology , northern hemisphere , forecast skill , anomaly (physics) , diurnal cycle , atmospheric sciences , geography , geology , physics , condensed matter physics
Most rawinsondes are launched once or twice daily, at 0000 and/or 1200 UTC; only a small number of the total rawinsonde observations are taken at 0600 and 1800 UTC (“off hour” cycle times). In this study, the variations of forecast and analysis quality between cycle times and the potential improvement of skill due to supplemental rawinsonde measurements at 0600 and 1800 UTC are tested in the framework of an observing system simulation experiment (OSSE). The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA GMAO) Goddard Earth Observing System Model, version 5 (GEOS-5), is used with the GMAO OSSE setup for an experiment emulating the months of July and August with the 2011 observational network. The OSSE is run with and without supplemental rawinsonde observations at 0600 and 1800 UTC, and the differences in analysis error and forecast skill are quantified. The addition of supplemental rawinsonde observations results in significant improvement of analysis quality in the Northern Hemisphere for both the 0000/1200 and 0600/1800 UTC cycle times, with greater improvement for the off-hour times. Reduction of root-mean-square errors on the order of 1%–3% for wind and temperature is found at the 24- and 48-h forecast times. There is a slight improvement in Northern Hemisphere anomaly correlations at the 120-h forecast time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here