
Postprocessing of Ensemble Weather Forecasts Using a Stochastic Weather Generator
Author(s) -
Jie Chen,
François Brissette,
Bingbing Li
Publication year - 2014
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-13-00180.1
Subject(s) - north american mesoscale model , quantitative precipitation forecast , ensemble forecasting , precipitation , meteorology , global forecast system , calibration , numerical weather prediction , consensus forecast , environmental science , weather forecasting , model output statistics , probabilistic forecasting , computer science , autocorrelation , probabilistic logic , statistics , mathematics , artificial intelligence , geography
This study proposes a new statistical method for postprocessing ensemble weather forecasts using a stochastic weather generator. Key parameters of the weather generator were linked to the ensemble forecast means for both precipitation and temperature, allowing the generation of an infinite number of daily times series that are fully coherent with the ensemble weather forecast. This method was verified through postprocessing reforecast datasets derived from the Global Forecast System (GFS) for forecast leads ranging between 1 and 7 days over two Canadian watersheds in the Province of Quebec. The calibration of the ensemble weather forecasts was based on a cross-validation approach that leaves one year out for validation and uses the remaining years for training the model. The proposed method was compared with a simple bias correction method for ensemble precipitation and temperature forecasts using a set of deterministic and probabilistic metrics. The results show underdispersion and biases for the raw GFS ensemble weather forecasts, which indicated that they were poorly calibrated. The proposed method significantly increased the predictive power of ensemble weather forecasts for forecast leads ranging between 1 and 7 days, and was consistently better than the bias correction method. The ability to generate discrete, autocorrelated daily time series leads to ensemble weather forecasts’ straightforward use in forecasting models commonly used in the fields of hydrology or agriculture. This study further indicates that the calibration of ensemble forecasts for a period up to one week is reasonable for precipitation, and for temperature it could be reasonable for another week.