
Comparisons of Single- and Double-Moment Microphysics Schemes in the Simulation of a Synoptic-Scale Snowfall Event
Author(s) -
Andrew Molthan,
Brian A. Colle
Publication year - 2012
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-11-00292.1
Subject(s) - environmental science , precipitation , weather research and forecasting model , meteorology , snow , numerical weather prediction , satellite , lidar , climatology , atmospheric sciences , remote sensing , geology , geography , aerospace engineering , engineering
The Canadian CloudSat/Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Validation Project (C3VP) provided aircraft, surface, and remotely sensed observations of cloud and precipitation characteristics to support improved simulation of cold-season precipitation within weather forecast models and new developments in satellite and radar precipitation retrievals. On 22 January 2007, the C3VP campaign executed an intensive observation period to sample widespread snowfall that occurred as a midlatitude cyclone tracked along the U.S.–Canadian border. Surface air temperature and precipitation measurements, combined with aircraft measurement of hydrometeor content and size distribution, are used to examine various assumptions and parameterizations included within four bulk water microphysics schemes available within the Weather Research and Forecasting Model (WRF). In a simulation of the 22 January 2007 event, WRF forecasts reproduced the overall precipitation pattern observed during aircraft sampling, allowing for a comparison between C3VP measurements and microphysics scheme assumptions. Single-moment schemes that provide flexibility in size distribution parameters as functions of temperature can represent much of the vertical variability observed in aircraft data, but variability is reduced in an environment where the simulated temperature profile is nearly isothermal. Double-moment prediction of total number concentration may improve the representation of ice crystal aggregation. Inclusion of both temperature dependence on distribution parameters and variability in mass–diameter or diameter–fall speed relationships suggest a means of improving upon single-moment predictions.