
Large-Scale Flow and the Long-Lasting Blocking High over Russia: Summer 2010
Author(s) -
Andrea Schneidereit,
Silke Schubert,
P. N. Vargin,
Frank Lunkeit,
Xiuhua Zhu,
D. Peters,
Klaus Fraedrich
Publication year - 2012
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-11-00249.1
Subject(s) - climatology , blocking (statistics) , eddy , anticyclone , northern hemisphere , arctic , siberian high , geology , atmospheric sciences , environmental science , geography , meteorology , oceanography , east asia , turbulence , statistics , mathematics , archaeology , china
Several studies show that the anomalous long-lasting Russian heat wave during the summer of 2010, linked to a long-persistent blocking high, appears mainly as a result of natural atmospheric variability. This study analyzes the large-scale flow structure based on the ECMWF Re-Analysis Interim (ERA-Interim) data (1989-2010). The anomalous long-lasting blocking high over western Russia including the heat wave occurs as an overlay of a set of anticyclonic contributions on different time scales. (i) A regime change in ENSO toward La Nina modulates the quasi-stationary wave structure in the boreal summer hemisphere supporting the eastern European blocking. The polar Arctic dipole mode is enhanced and shows a projection on the mean blocking high. (ii) Together with the quasi-stationary wave anomaly, the transient eddies maintain the long-lasting blocking. (iii) Three different pathways of wave action are identified on the intermediate time scale (similar to 10-60 days). One pathway commences over the eastern North Pacific and includes the polar Arctic region; another one runs more southward and crossing the North Atlantic, continues to eastern Europe; a third pathway southeast of the blocking high describes the downstream development over South Asia