z-logo
open-access-imgOpen Access
The Timing of Cloud-to-Ground Lightning Relative to Total Lightning Activity
Author(s) -
Donald R. MacGorman,
I. Apostolakopoulos,
Nicole R. Lund,
N. Demetriades,
Martin J. Murphy,
P. R. Krehbiel
Publication year - 2011
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-11-00047.1
Subject(s) - lightning detection , lightning (connector) , storm , flash (photography) , meteorology , upper atmospheric lightning , atmospheric electricity , environmental science , thunderstorm , cloud top , cloud computing , geology , lightning strike , geography , physics , computer science , power (physics) , quantum mechanics , electric field , operating system , optics
The first flash produced by a storm usually does not strike ground, but little has been published concerning the time after the first flash before a cloud-to-ground flash occurs, particularly for a variety of climatological regions. To begin addressing this issue, this study analyzed data from very-high-frequency (VHF) lightning mapping systems, which detect flashes of all types, and from the U.S. National Lightning Detection Network (NLDN), which identifies flash type and detects roughly 90% of cloud-to-ground flashes overall. VHF mapping data were analyzed from three regions: north Texas, Oklahoma, and the high plains of Colorado, Kansas, and Nebraska. The percentage of storms in which a cloud-to-ground flash was detected in the first minute of lightning activity varied from 0% in the high plains to 10%–20% in Oklahoma and north Texas. The distribution of delays to the first cloud-to-ground flash varied similarly. In Oklahoma and north Texas, 50% of storms produced a cloud-to-ground flash within 5–10 min, and roughly 10% failed to produce a cloud-to-ground flash within 1 h. In the high plains, however, it required 30 min for 50% of storms to have produced a cloud-to-ground flash, and 20% produced no ground flash within 1 h. The authors suggest that the reason high plains storms take longer to produce cloud-to-ground lightning is because the formation of the lower charge needed to produce most cloud-to-ground flashes is inhibited either by delaying the formation of precipitation in the mid- and lower levels of storms or by many of the storms having an inverted-polarity electrical structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here