Open Access
The Madden–Julian Oscillation’s Influence on African Easterly Waves and Downstream Tropical Cyclogenesis
Author(s) -
Michael J. Ventrice,
Chris D. Thorncroft,
Paul E. Roundy
Publication year - 2011
Publication title -
monthly weather review
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.862
H-Index - 179
eISSN - 1520-0493
pISSN - 0027-0644
DOI - 10.1175/mwr-d-10-05028.1
Subject(s) - madden–julian oscillation , tropical cyclogenesis , climatology , cyclogenesis , tropical cyclone , african easterly jet , convection , tropical wave , geology , atmospheric sciences , environmental science , geography , cyclone (programming language) , meteorology , computer hardware , field programmable gate array , computer science
The influence of the Madden–Julian oscillation (MJO) over tropical Africa and Atlantic is explored during the Northern Hemisphere summer months. The MJO is assessed by using real-time multivariate MJO (RMM) indices. These indices divide the active convective signal of the MJO into 8 phases. Convection associated with the MJO is enhanced over tropical Africa during RMM phases 8, 1, and 2. Convection becomes suppressed over tropical Africa during the subsequent RMM phases (phases 3–7). African convective signals are associated with westward-propagating equatorial Rossby waves. The MJO modulates African easterly wave (AEW) activity. AEW activity is locally enhanced during RMM phases 1–3 and suppressed during RMM phases 6–8. Enhanced AEW activity occurs during periods of enhanced convection over tropical Africa, consistent with stronger or more frequent triggering of AEWs as well as more growth associated with latent heat release. Enhanced AEW activity occurs during the low-level westerly wind phase of the MJO, which increases the cyclonic shear on the equatorward side of the AEJ, increasing its instability. Atlantic tropical cyclogenesis frequency varies coherently with the MJO. RMM phases 1–3 show the greatest frequency of tropical cyclogenesis events whereas phases 7 and 8 show the least. RMM phase 2 is also the most likely phase to be associated with a train of three or more tropical cyclones over the tropical Atlantic. This observed evolution of tropical cyclogenesis frequency varies coherently with variations in AEW activity and the large-scale environment.