
Adequacy of the In Situ Observing System in the Satellite Era for Climate SST
Author(s) -
HuaiMin Zhang,
Richard W. Reynolds,
Thomas M. Smith
Publication year - 2006
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech1828.1
Subject(s) - buoy , environmental science , satellite , sea surface temperature , meteorology , radiometer , remote sensing , climatology , geology , geography , oceanography , aerospace engineering , engineering
A method is presented to evaluate the adequacy of the recent in situ network for climate sea surface temperature (SST) analyses using both in situ and satellite observations. Satellite observations provide superior spatiotemporal coverage, but with biases; in situ data are needed to correct the satellite biases. Recent NOAA/U.S. Navy operational Advanced Very High Resolution Radiometer (AVHRR) satellite SST biases were analyzed to extract typical bias patterns and scales. Occasional biases of 2°C were found during large volcano eruptions and near the end of the satellite instruments’ lifetime. Because future biases could not be predicted, the in situ network was designed to reduce the large biases that have occurred to a required accuracy. Simulations with different buoy density were used to examine their ability to correct the satellite biases and to define the residual bias as a potential satellite bias error (PSBE). The PSBE and buoy density (BD) relationship was found to be nearly exponential, resulting in an optimal BD range of 2–3 per 10° × 10° box for efficient PSBE reduction. A BD of two buoys per 10° × 10° box reduces a 2°C maximum bias to below 0.5°C and reduces a 1°C maximum bias to about 0.3°C. The present in situ SST observing system was evaluated to define an equivalent buoy density (EBD), allowing ships to be used along with buoys according to their random errors. Seasonally averaged monthly EBD maps were computed to determine where additional buoys are needed for future deployments. Additionally, a PSBE was computed from the present EBD to assess the in situ system’s adequacy to remove potential future satellite biases.