z-logo
open-access-imgOpen Access
Remote Measurements of Horizontal Eddy Diffusivity
Author(s) -
Darek Bogucki,
Burton H. Jones,
MaryElena Carr
Publication year - 2005
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech1794.1
Subject(s) - eddy diffusion , advection , thermal diffusivity , remote sensing , environmental science , bathymetry , geology , current (fluid) , diffusion , dispersion (optics) , sampling (signal processing) , meteorology , turbulence , oceanography , filter (signal processing) , computer science , optics , physics , quantum mechanics , computer vision , thermodynamics
The rate of horizontal diffusivity or lateral dispersion is key to understanding the dispersion of tracers and contaminants in the ocean, and it is an elusive, yet crucial, parameter in numerical models of circulation. However, the difficulty of parameterizing horizontal mixing is exacerbated in the shallow coastal ocean, which points to the need for more direct measurements. Here, a novel and inexpensive approach to remotely measure the rate of horizontal diffusivity is proposed. Current shipboard measurement techniques require repeated surveys and are thus time consuming and labor intensive. Furthermore, intensive in situ sampling is generally impractical for routine coastal management or for rapid assessment in the case of emergencies. A remote approach is particularly useful in shallow coastal regions or those with complex bathymetry. A time series of images from a dye-release experiment was obtained with a standard three-megapixel digital camera from a helicopter that hovered over the study area. The red–green–blue (RGB) images were then 1) analyzed to distinguish the dye from the ambient color of the water and adjacent land features, 2) orthorectified, and 3) analyzed to obtain advection and diffusion rates of the thin subsurface dye layer. A horizontal current of the order of 6 cm s−1 was found. The estimated horizontal eddy diffusivity rate for scales of O(10 m) in the harbor was 0.1 m2 s−1. The dye diffusivity and advection rate that are calculated from the images are consistent with independent calculations based on in situ measurements of current speed fluctuations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here