Open Access
Monitoring the Reflectivity Calibration of a Scanning Radar Using a Profiling Radar and a Disdrometer
Author(s) -
C. R. Williams,
K. S. Gage,
W. L. Clark,
Paul A. Kucera
Publication year - 2005
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech1759.1
Subject(s) - disdrometer , radar , remote sensing , environmental science , profiling (computer programming) , calibration , 3d radar , weather radar , meteorology , radar imaging , geology , radar engineering details , computer science , geography , mathematics , statistics , rain gauge , telecommunications , operating system
This paper describes a method of absolutely calibrating and routinely monitoring the reflectivity calibration from a scanning weather radar using a vertically profiling radar that has been absolutely calibrated using a collocated surface disdrometer. The three instruments have different temporal and spatial resolutions, and the concept of upscaling is used to relate the small resolution volume disdrometer observations with the large resolution volume scanning radar observations. This study uses observations collected from a surface disdrometer, two profiling radars, and the National Weather Service (NWS) Weather Surveillance Radar-1988 Doppler (WSR-88D) scanning weather radar during the Texas–Florida Underflight-phase B (TEFLUN-B) ground validation field campaign held in central Florida during August and September 1998. The statistics from the 2062 matched profiling and scanning radar observations during this 2-month period indicate that the WSR-88D radar had a reflectivity 0.7 dBZ higher than the disdrometer-calibrated profiler, the standard deviation was 2.4 dBZ, and the 95% confidence interval was 0.1 dBZ. This study implies that although there is large variability between individual matched observations, the precision of a series of observations is good, allowing meaningful comparisons useful for calibration and monitoring.