z-logo
open-access-imgOpen Access
Requirement-Driven Design of Pulse Compression Waveforms for Weather Radars
Author(s) -
Sebastián Torres,
Christopher D. Curtis,
David Schvartzman
Publication year - 2017
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech-d-16-0231.1
Subject(s) - pulse compression , computer science , waveform , radar , pulse doppler radar , bandwidth (computing) , remote sensing , electronic engineering , telecommunications , radar imaging , geology , engineering
With more weather radars relying on low-power solid-state transmitters, pulse compression has become a necessary tool for achieving the sensitivity and range resolution that are typically required for weather observations. While pulse compression is well understood in the context of point-target radar applications, the design of pulse compression waveforms for weather radars is challenging because requirements for these types of systems traditionally assume the use of high-power transmitters and short conventional pulses. In this work, Weather Surveillance Radar-1988 Doppler (WSR-88D) antenna pattern requirements are used to illustrate how suitable requirements can be formulated for the radar range weighting function (RWF), which is determined by the transmitted waveform and any range-time signal processing. These new requirements set bounds on the RWF range sidelobes, which are unavoidable with pulse compression waveforms. Whereas nonlinear frequency modulation schemes are effective at reducing RWF sidelobes, they usually require a larger transmission bandwidth, which is a precious commodity. An optimization framework is proposed to obtain minimum-bandwidth pulse compression waveforms that meet the new RWF requirements while taking into account the effects of any range-time signal processing. Whereas pulse compression is used to meet sensitivity and range-resolution requirements, range-time signal processing may be needed to meet data-quality and/or update-time requirements. The optimization framework is tailored for three processing scenarios and corresponding pulse compression waveforms are produced for each. Simulations of weather data are used to illustrate the performance of these waveforms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here