z-logo
open-access-imgOpen Access
Estimating Nonraining Surface Parameters to Assist GPM Constellation Radiometer Precipitation Algorithms
Author(s) -
F. Joseph Turk,
Ziad S. Haddad,
Yalei You
Publication year - 2016
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech-d-15-0229.1
Subject(s) - global precipitation measurement , remote sensing , emissivity , environmental science , satellite , meteorology , advanced microwave sounding unit , radiometer , atmospheric radiative transfer codes , special sensor microwave/imager , radar , computer science , precipitation , microwave , brightness temperature , radiative transfer , geology , geography , aerospace engineering , physics , telecommunications , engineering , quantum mechanics , optics
The joint National Aeronautics and Space Administration (NASA) and Japanese Aerospace Exploration Agency (JAXA) Global Precipitation Measurement (GPM) is a constellation mission, centered upon observations from the core satellite dual-frequency precipitation radar (DPR) and its companion passive microwave (MW) GPM Microwave Imager (GMI). One of the key challenges for GPM is how to link the information from the single DPR across all passive MW sensors in the constellation, to produce a globally consistent precipitation product. Commonly, the associated surface emissivity and environmental conditions at the satellite observation time are interpolated from ancillary data, such as global forecast models and emissivity climatology, and are used for radiative transfer simulations and cataloging/indexing the brightness temperature (TB) observations and simulations within a common MW precipitation retrieval framework. In this manuscript, the feasibility of an update to the surface emissivity state at or near the satellite observation time, regardless of surface type, is examined for purposes of assisting these algorithms with specification of the surface and environmental conditions. Since the constellation MW radiometers routinely observe many more nonprecipitating conditions than precipitating conditions, a principal component analysis is developed from the noncloud GMI–DPR observations as a means to characterize the emissivity state vector and to consistently track the surface and environmental conditions. The method is demonstrated and applied over known complex surface conditions to probabilistically separate cloud and cloud-free scenes. The ability of the method to globally identify “self-similar” surface locations from the TB observations without requiring any ancillary knowledge of geographical location or time is demonstrated.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here