
An Examination of Precipitation Using CSU–CHILL Dual-Wavelength, Dual-Polarization Radar Observations
Author(s) -
Francesc Junyent,
V. Chandrasekar
Publication year - 2016
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech-d-14-00229.1
Subject(s) - radar , attenuation , weather radar , optics , wavelength , dual polarization interferometry , differential phase , polarization (electrochemistry) , remote sensing , s band , scattering , physics , phase (matter) , geology , computer science , telecommunications , chemistry , quantum mechanics , antenna (radio)
The CSU–CHILL radar is a dual-wavelength, dual-polarization weather radar system operating at S and X bands with coaxial beams. One of the capabilities of this radar system is the possibility of developing and/or validating algorithms across dual wavelengths and dual polarizations. This paper presents one such instance, showing how the rainfall field can be estimated either from the S- and X-band reflectivities or from the differential propagation phase at X band. To do so, the paper first presents a dual-wavelength attenuation correction method that uses the reflectivity measured at S band, as the constraint for the correction of the reflectivity measured at X band, and it describes how Mie scattering regions at X band may be detected from the retrieved path-integrated attenuation field. Then, the paper describes how the resulting specific attenuation field relates to rainfall and specific phase at X band, which can be obtained from dual-polarization data at a single wavelength as well, and shows examples. Finally, the paper looks at the relation between attenuation and the differential phase as a function of elevation angle for a few cases, which may be related to the drop size distribution and mean diameter, as well as temperature.