z-logo
open-access-imgOpen Access
Development and Analysis of the Systematically Merged Atlantic Regional Temperature and Salinity Climatology for Oceanic Heat Content Estimates
Author(s) -
Patrick C. Meyers,
Lynn K. Shay,
Jodi K. Brewster
Publication year - 2014
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech-d-13-00100.1
Subject(s) - argo , bathythermograph , environmental science , climatology , mixed layer , sea surface temperature , ocean heat content , temperature salinity diagrams , sea surface height , salinity , oceanography , geology
An oceanic climatology to calculate upper-ocean thermal structure was developed for application year-round in the North Atlantic Ocean basin. The Systematically Merged Atlantic Regional Temperature and Salinity (SMARTS) Climatology is used in a two-layer model to project sea surface height anomalies (SSHA) into the water column at ¼° resolution. SMARTS blended monthly temperature and salinity fields from the World Ocean Atlas 2001 (WOA01) and Generalized Digital Environmental Model (GDEM) version 3.0 based on their performance compared to in situ measurements. Daily mean isotherm depths of 20°C (D20) and 26°C (D26) (and their mean ratio), reduced gravity, and mixed layer depth (MLD) were estimated from the climatology. This higher-resolution climatology resolves features in the Gulf of Mexico (GOM), including the Loop Current (LC) and eddy shedding region. Using SMARTS with satellite-derived SSHA and SST fields, daily values of isotherm depths, mixed layer depths, and ocean heat content (OHC) were calculated from 1998 to 2012. OHC is an important scalar when determining the ocean’s impact on tropical cyclone intensification, because it is a better predictor of SST cooling during hurricane passage. Airborne- and ship-deployed expendable bathythermographs (XBT), long-term moorings, and Argo profiling floats provided over 50 000 thermal profiles to assess satellite retrievals of isotherm depths and OHC using the SMARTS Climatology. The OHC calculation presented in this document reduces errors basinwide by 20%, with a 35% error reduction in the GOM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here