
The DeTect Inc. RAPTOR VAD-BL Radar Wind Profiler
Author(s) -
E. M. Lau,
Scott A. McLaughlin,
Frank Pratte,
B. L. Weber,
D. A. Merritt,
Maikel Wise,
Gary Zimmerman,
M. K. James,
Megan A. Sloan
Publication year - 2013
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech-d-12-00259.1
Subject(s) - wind profiler , computer science , remote sensing , radar , antenna (radio) , azimuth , environmental science , real time computing , telecommunications , geology , physics , optics
The DeTect Inc. RAPTOR velocity–azimuth display boundary layer (VAD-BL) radar wind profiler is a pulsed Doppler radar used to make automatic unattended measurements of wind profiles in the lower atmosphere. All data products are produced on site, in real time, and utilize quality control software to screen out interference. The nominal frequencies are 915 and 1290 MHz but other frequencies can be accommodated. While the architecture is similar to other boundary layer wind profilers, the RAPTOR VAD-BL is designed to provide consistently superior data quality due to its antenna design and signal processing capabilities. The antenna is a high-performance parabolic reflector with a feed that is designed in house for the operational frequency of the radar. The antenna is mounted on a robust military-grade azimuth-only positioner. The RAPTOR VAD-BL can collect data from several opposing beam positions with the goal of producing higher-quality wind data using the velocity–azimuth display (VAD) algorithm. The Advanced Signal Processing Engine (ASPEN) software used to calculate winds outperforms conventional consensus algorithms. The health and status of all critical subsystems is monitored via the profiler health monitor (PHM), a stand-alone monitor with its own microprocessor. Results from systems deployed for operational applications show the potential for the retrieval of high-quality data with excellent height coverage and a solid design that allows the antenna to perform under sustained high wind loading.