
Infrared Thermometry in Winter Road Maintenance
Author(s) -
Patrik Jönsson,
Mats Riehm
Publication year - 2012
Publication title -
journal of atmospheric and oceanic technology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.774
H-Index - 124
eISSN - 1520-0426
pISSN - 0739-0572
DOI - 10.1175/jtech-d-11-00071.1
Subject(s) - road surface , environmental science , remote sensing , infrared , computer science , meteorology , geology , materials science , physics , optics , composite material
There is significant interest among road authorities in measuring pavement conditions to perform appropriate winter road maintenance. The most common monitoring methods are based on pavement-mounted sensors. This study’s hypothesis is that the temperature distribution in a pavement can be measured by means of a nonintrusive method to retrieve the topmost pavement temperature values. By utilizing the latest infrared (IR) technology, it is possible to retrieve additional information concerning both road temperatures and road conditions. The authors discovered that surface temperature readings from IR sensors are more reliable than data retrieved from traditional surface-mounted sensors during wet, snowy, or icy road conditions. It was also possible to detect changes in the road condition by examining how the temperatures in wheel tracks and in between the wheel tracks differ from a reference dry road condition. The conclusion was that nonintrusive measurement of the road temperature is able to provide an increase in relation to the knowledge about both the road temperature and the road condition. Another conclusion was that the surface temperature should not be considered as being equal to the ground temperatures retrieved from traditional surface-mounted sensors except under conditions of dry, stable roadways.