z-logo
open-access-imgOpen Access
Response of the Lower St. Lawrence Estuary to External Forcing in Winter
Author(s) -
G. C. Moore Smith,
François J. Saucier,
David Straub
Publication year - 2006
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo2927.1
Subject(s) - baroclinity , estuary , forcing (mathematics) , oceanography , advection , estuarine water circulation , geology , climatology , salinity , atmospheric sciences , environmental science , physics , thermodynamics
Mostly because of a lack of observations, fundamental aspects of the St. Lawrence Estuary’s wintertime response to forcing remain poorly understood. The results of a field campaign over the winter of 2002/03 in the estuary are presented. The response of the system to tidal forcing is assessed through the use of harmonic analyses of temperature, salinity, sea level, and current observations. The analyses confirm previous evidence for the presence of semidiurnal internal tides, albeit at greater depths than previously observed for ice-free months. The low-frequency tidal streams were found to be mostly baroclinic in character and to produce an important neap tide intensification of the estuarine circulation. Despite stronger atmospheric momentum forcing in winter, the response is found to be less coherent with the winds than seen in previous studies of ice-free months. The tidal residuals show the cold intermediate layer in the estuary is renewed rapidly (14 days) in late March by the advection of a wedge of near-freezing waters from the Gulf of St. Lawrence. In situ processes appeared to play a lesser role in the renewal of this layer. In particular, significant wintertime deepening of the estuarine surface mixed layer was prevented by surface stability, which remained high throughout the winter. The observations also suggest that the bottom circulation was intensified during winter, with the intrusion in the deep layer of relatively warm Atlantic waters, such that the 3°C isotherm rose from below 150 m to near 60 m.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here