
Intensification of the Atlantic Deep Circulation by the Canadian Archipelago Throughflow
Author(s) -
Yuzo Komuro,
Hiroyasu Hasumi
Publication year - 2005
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo2709.1
Subject(s) - archipelago , throughflow , oceanography , north atlantic deep water , geology , salinity , ocean current , water mass , thermohaline circulation , climatology , soil science
Low-salinity water export through the Canadian Archipelago is one of the main components of the freshwater budget in the Arctic Ocean. Nevertheless, the Canadian Archipelago is closed in most global ocean models. How it is that deep-water formation at high latitudes of the Northern Hemisphere depends on the opening and closing of the Canadian Archipelago is investigated. An ice–ocean coupled model, whose horizontal resolution is 1°, is used without restoring surface salinity to observed data. When the Canadian Archipelago is open, the Atlantic deep circulation strengthens by 21%. This enhancement is caused by intensification of deep-water formation in the northern North Atlantic Ocean. Surface salinity in these regions is affected by the East Greenland Current, which flows from the Fram Strait and increases its salinity when the Canadian Archipelago is opened. The low-salinity flow through the Canadian Archipelago affects surface salinity only in the western part of the Labrador Sea. A cyclonic circulation in the Labrador Sea plays an important role in limiting the direct impact of the Canadian Archipelago throughflow. Consequently, the deep-water formation there is intensified and the Atlantic deep circulation is strengthened. Thus, it is suggested that the Canadian Archipelago throughflow does not weaken the Atlantic deep circulation by the freshening of the Labrador Sea but strengthens it by the salinity increase in the Fram Strait.