
Eddy-Induced Heat Transport in the Subtropical North Pacific from Argo, TMI, and Altimetry Measurements
Author(s) -
Bo Qiu,
Shuiming Chen
Publication year - 2005
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo2696.1
Subject(s) - argo , thermocline , mesoscale meteorology , geology , ocean gyre , climatology , sea surface height , sea surface temperature , eddy , ocean heat content , temperature salinity diagrams , heat flux , oceanography , turbulence , subtropics , meteorology , heat transfer , geography , salinity , fishery , biology , physics , thermodynamics
Basin-scale heat transport induced by mesoscale oceanic eddies is estimated by combining satellite-derived sea surface height and temperature [temperature data are from the TRMM Microwave Imager (TMI)] data with Argo float temperature–salinity data. In the North Pacific Ocean subtropical gyre, warm (cold) temperature anomalies of mesoscale eddies are found to be consistently located to the west of high (low) SSH anomalies. The phase misalignment between the temperature and velocity anomalies, however, is largely confined to the seasonal thermocline, causing most of the eddy-induced heat transport to be carried in the surface 200-m layer. By establishing a statistical relationship between the surface and depth-integrated values of the eddy heat transport, the basin-scale eddy heat transport is derived from the concurrent satellite SSH/SST data of the past six years. In the Kuroshio Extension region, the meandering zonal jet is found to generate oppositely signed eddy heat fluxes. As a result, the zonally integrated poleward heat transport associated with the Kuroshio Extension is at a level O(0.1 PW), smaller than the previous estimates based on turbulent closure schemes. Large poleward eddy heat transport is also found in the subtropical North Pacific along a southwest–northeast-tilting band between Taiwan and the Midway Islands. This band corresponds to the region of the subtropical front, and it is argued that the relevant temperature field for identifying this band in the turbulent closure scheme models should be that averaged over the seasonal thermocline.