
Identification of the Mechanism of Interdecadal Variability in the North Atlantic Ocean
Author(s) -
Lianke Te Raa,
J. Gerrits,
Henk A. Dijkstra
Publication year - 2004
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo2655.1
Subject(s) - geology , climatology , zonal and meridional , geophysics , mode (computer interface) , thermohaline circulation , computer science , operating system
The aim of this paper is to identify the physical mechanism of interdecadal variability in simulations of the North Atlantic Ocean circulation with the Modular Ocean Model of the Geophysical Fluid Dynamics Laboratory. To that end, a hierarchy of increasingly complex model configurations is used. The variability in the simplest case, that of viscous, purely thermally driven flows in a flat-bottom ocean basin with a box-shaped geometry, is shown to be caused by an internal interdecadal mode. The westward propagation of temperature anomalies and the phase difference between the anomalous zonal and meridional overturning that characterize the interdecadal mode are used as “fingerprints” of the physical mechanism of the variability. In this way, the variability can be followed toward a less viscous regime in which the effects of continental geometry and bottom topography are also included. It is shown that, although quantitative aspects of the variability like period and spatial pattern are changing, the physical mechanism of the interdecadal variability in the more complex simulations can be attributed to the same processes as in the simplest model configuration.