z-logo
open-access-imgOpen Access
Interannual Variability of the Mindanao Current/Undercurrent in Direct Observations and Numerical Simulations
Author(s) -
Shijian Hu,
Dunxin Hu,
Cong Guan,
Fan Wang,
Linlin Zhang,
Fujun Wang,
Qingye Wang
Publication year - 2016
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo-d-15-0092.1
Subject(s) - geology , ekman transport , mooring , oceanography , boundary current , rossby wave , climatology , wind stress , current (fluid) , acoustic doppler current profiler , forcing (mathematics) , western hemisphere warm pool , ocean current , pacific ocean , upwelling
The interannual variability of the boundary currents east of the Mindanao Island, including the Mindanao Current/Undercurrent (MC/MUC), is investigated using moored acoustic Doppler current profiler (ADCP) measurements combined with a series of numerical experiments. The ADCP mooring system was deployed east of the Mindanao Island at 7°59′N, 127°3′E during December 2010–August 2014. Depth-dependent interannual variability is detected in the two western boundary currents: strong and lower-frequency variability dominates the upper-layer MC, while weaker and higher-frequency fluctuation controls the subsurface MUC. Throughout the duration of mooring measurements, the weakest MC was observed in June 2012, in contrast to the maximum peaks in December 2010 and June 2014, while in the deeper layer the MUC shows speed peaks circa December 2010, January 2011, April 2013, and July 2014 and valleys circa June 2011, August 2012, and November 2013. Diagnostic analysis and numerical sensitivity experiments using a 2.5-layer reduced-gravity model indicate that wind forcing in the western Pacific Ocean is a driving agent in conditioning the interannual variability of MC and MUC. Results suggest that westward-propagating Rossby waves that generate in the western Pacific Ocean (roughly 150°–180°E) are of much significance in the interannual variability of the two boundary currents. Fluctuation of Ekman pumping due to local wind stress curl anomaly in the far western Pacific Ocean (roughly 120°–150°E) also plays a role in the interannual variability of the MC. The relationship between the MC/MUC and El Niño is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here