
On the Factors Controlling the Eddy-Induced Transport in the Antarctic Circumpolar Current
Author(s) -
Romain Pennel,
Igor Kamenkovich
Publication year - 2014
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo-d-13-0256.1
Subject(s) - eddy , geology , advection , zonal and meridional , zonal flow (plasma) , eddy diffusion , latitude , mean flow , climatology , mechanics , turbulence , geophysics , atmospheric sciences , geodesy , physics , plasma , quantum mechanics , tokamak , thermodynamics
This study examines eddy-driven material transport by analyzing trajectories of Lagrangian particles in an idealized model of the Southern Ocean. The main focus is on the direction of the transport in the latitude–depth plane, as well as on the magnitudes of the vertical and meridional particle dispersion. In particular, this transport is along the mean isopycnals in the control simulation, but changes its direction and intensity in a series of sensitivity experiments with artificially modified currents. The main new conclusion is that the direction of the transport is determined by the three-dimensional interplay between the zonal background flow and the transient eddies; the stationary meanders play a secondary role. The key parameter here is the strength of the zonal advection relative to the eddy magnitudes, whereas the mean vertical shear in the zonal velocity is of secondary importance. In particular, stronger mean zonal advection leads to steeper orientation of the eddy fluxes and deeper penetration of tracer anomalies.