
Resonant Diurnal Oscillations and Mean Alongshore Flows Driven by Sea/Land Breeze Forcing in the Coastal Southern California Bight
Author(s) -
SungHyun Nam,
Uwe Send
Publication year - 2013
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo-d-11-0148.1
Subject(s) - sea breeze , forcing (mathematics) , wind stress , submarine pipeline , diurnal cycle , atmospheric sciences , environmental science , climatology , daytime , heat flux , geology , flux (metallurgy) , oceanography , heat transfer , mechanics , physics , materials science , metallurgy
This study presents observations of the cross-sectional structure of resonant response to sea/land breezes (SLBs) off Huntington Beach (HB) in the Southern California Bight (SCB). A resonant response to local diurnal wind stress fluctuations associated with SLB forcing occurs intermittently and produces strong diurnal oscillations of flow and temperature resulting from enhanced work of the diurnal local wind on the sea surface. At nighttime (daytime), a coherent cross-sectional circulation with offshore (onshore) currents in the surface layer (upper 15 m) and onshore (offshore) currents in the intermediate layer around 20 m are generated, with a three-layered vertical structure on the outer shelf. The authors find a net cross-shore eddy heat flux (net cooling of nearshore water) during the period of strong response to SLB, that is, a rectified mean heat flux and steeper isotherms resulting from the diurnal SLB fluctuations. The steepened mean isotherms are also found to be in thermal–wind balance with intensified mean equatorward flow, which thus can also be generated by the resonant SLB dynamics. Similar rectified onshore transport of other quantities is expected, relevant for biogeochemical processes. The distribution of maximum diurnal kinetic energy in time and across the shelf supports the concept that subinertial shears create the sufficient condition for resonant response to SLB forcing.