z-logo
open-access-imgOpen Access
A Simple Analytical Model of Periodic Coastal Upwelling
Author(s) -
Mirko Orlić,
Zoran Pasarić
Publication year - 2011
Publication title -
journal of physical oceanography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.706
H-Index - 143
eISSN - 1520-0485
pISSN - 0022-3670
DOI - 10.1175/jpo-d-10-05000.1
Subject(s) - baroclinity , pycnocline , forcing (mathematics) , upwelling , geology , shore , geophysics , inertia , climatology , atmospheric sciences , mechanics , physics , oceanography , classical mechanics
An existing reduced-gravity model that reproduces the response of the coastal sea to alongshore wind forcing at subinertial frequencies is extended by allowing for cross-shore wind forcing and by considering superinertial frequencies. The obtained explicit solution shows that the wind-driven currents are predominantly controlled by friction and the Coriolis force at subinertial frequencies and by friction and local acceleration at superinertial frequencies. The effect of the coast is manifested by coastal-trapped variability at subinertial frequencies and baroclinic inertia–gravity waves propagating away from the coast at superinertial frequencies. The pycnocline oscillates at the coast not only at subinertial but also at superinertial frequencies, with the alongshore wind contributing more to the former and the cross-shore wind influencing more the latter. The oscillations are most pronounced when the periodic wind forcing is resonantly coupled to the local inertial oscillations (but only if the wind is not rotating counter to the inertial currents) and at near-zero frequencies (but not when the wind is purely cross-shore). These theoretical findings are related to recent observations of diurnal temperature oscillations in the near-shore water column.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here