Open Access
Numerical Weather Forecasts at Kilometer Scale in the French Alps: Evaluation and Application for Snowpack Modeling
Author(s) -
Vincent Vionnet,
Ingrid Dombrowski-Etchevers,
Matthieu Lafaysse,
Louis Quéno,
Yann Seity,
Éric Bazile
Publication year - 2016
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-15-0241.1
Subject(s) - snowpack , environmental science , snow , climatology , terrain , meteorology , numerical weather prediction , precipitation , water equivalent , cloud cover , mesoscale meteorology , geology , geography , cloud computing , cartography , computer science , operating system
Numerical weather prediction (NWP) systems operating at kilometer scale in mountainous terrain offer appealing prospects for forecasting the state of snowpack in support of avalanche hazard warning, water resources assessment, and flood forecasting. In this study, daily forecasts of the NWP system Applications of Research to Operations at Mesoscale (AROME) at 2.5-km grid spacing over the French Alps were considered for four consecutive winters (from 2010/11 to 2013/14). AROME forecasts were first evaluated against ground-based measurements of air temperature, humidity, wind speed, incoming radiation, and precipitation. This evaluation shows a cold bias at high altitude partially related to an underestimation of cloud cover influencing incoming radiative fluxes. AROME seasonal snowfall was also compared against output from the Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige (SAFRAN) specially developed for alpine terrain. This comparison reveals that there are regions of significant difference between the two, especially at high elevation, and possible causes for these differences are discussed. Finally, AROME forecasts and SAFRAN reanalysis have been used to drive the snowpack model Surface Externalisée (SURFEX)/Crocus (SC) and to simulate the snowpack evolution over a 2.5-km grid covering the French Alps during four winters. When evaluated at the experimental site of Col de Porte, both simulations show good agreement with measurements of snow depth and snow water equivalent. At the scale of the French Alps, AROME-SC exhibits an overall positive bias, with the largest positive bias found in the northern and central French Alps. This study constitutes the first step toward the development of a distributed snowpack forecasting system using AROME.