
The Sensitivity of the Terrestrial Surface Energy and Water Balance Estimates in the WRF Model to Lower Surface Boundary Representations: A South Norway Case Study
Author(s) -
Helene B. Erlandsen,
Ingjerd Haddeland,
Lena M. Tallaksen,
Jørn Kristiansen
Publication year - 2017
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-15-0146.1
Subject(s) - environmental science , weather research and forecasting model , snow , shortwave radiation , climatology , sensible heat , latent heat , longwave , atmospheric sciences , precipitation , water balance , climate model , energy balance , albedo (alchemy) , snowpack , climate change , meteorology , geography , radiative transfer , radiation , geology , ecology , oceanography , geotechnical engineering , performance art , biology , art history , art , physics , quantum mechanics
A seasonal snow cover, expansive forests, a long coast line, and a mountainous terrain are features of Norway’s geography. Forests, ground snow, and sea surface temperature (SST) vary on time scales relevant for weather forecasting and climate projections. The mapping and model parameterization of these features vary in novelty, accuracy, and complexity. This paper investigates how increasing the influence of each of these features affects southern Norway’s surface energy and water balance in a regional climate model (WRF). High-resolution (3.7 km) experimental runs have been conducted over two consecutive hydrological years, including 1) heightening the boreal forest line (the Veg experiment), 2) increasing ground snow by altering the snow/rain criterion (the Snow experiment), or 3) increasing the SST (the SST experiment). The Veg experiment led to an increase in annual net radiation in the study area (by 3 W m−2), largely balanced out by an increase in latent heat flux. Moisture recycling increased, leaving only a negligible decrease in annual runoff. Surface temperature increased by 0.1°C, and its seasonal variability was dampened. Significant changes were also found outside the area of vegetation change. Snow decreased by 1.5 W m−2, despite slight increases in downward shortwave and longwave radiation. Both sensible heat flux and surface temperature decreased (by 1.3 W m−2 and 0.2°C, respectively), but the annual water balance remained mostly unchanged. The SST experiment led to increased downward and upward longwave radiation. Surface temperature was raised by 0.2°C. Advected oceanic moisture and thus both precipitation and runoff increased (by 2.5% and 2.8%, respectively).