Open Access
Performance Evaluation of the Canadian Precipitation Analysis (CaPA)
Author(s) -
Franck Lespinas,
Vincent Fortin,
Guy Roy,
Peter Rasmussen,
Tricia A. Stadnyk
Publication year - 2015
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-14-0191.1
Subject(s) - precipitation , environmental science , meteorology , quantitative precipitation estimation , numerical weather prediction , climatology , quantitative precipitation forecast , radar , national weather service , satellite , computer science , geography , geology , telecommunications , aerospace engineering , engineering
This paper presents an assessment of the operational system used by the Meteorological Service of Canada for producing near-real-time precipitation analyses over North America. The Canadian Precipitation Analysis (CaPA) system optimally combines available surface observations with numerical weather prediction (NWP) output in order to produce estimates of precipitation on a 15-km grid at each synoptic hour (0000, 0600, 1200, and 1800 UTC). The validation protocol used to assess the quality of the CaPA has demonstrated the usefulness of the system for producing reliable estimates of precipitation over Canada, even in areas with few or no weather stations. The CaPA is found to be better in autumn, spring, and winter than in summer. This is because of the difficulty in correctly producing convective precipitation in the NWP because of the low spatial resolution of the meteorological model. An investigation of the quality of the precipitation analyses in the 15 terrestrial ecozones of Canada indicates the need to have a sufficient number of observations (at least ~1.17 stations per 10 000 km2) in order to produce a precipitation analysis that is significantly better than the raw NWP product. Improvements of the CaPA system by including provincial networks as well as radar and satellite information are expected in the future.