z-logo
open-access-imgOpen Access
Radar Vertical Profile of Reflectivity Correction with TRMM Observations Using a Neural Network Approach
Author(s) -
Yadong Wang,
Jian Zhang,
PaoLiang Chang,
Qing Cao
Publication year - 2015
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-14-0136.1
Subject(s) - quantitative precipitation estimation , remote sensing , terrain , radar , precipitation , satellite , environmental science , meteorology , reflectivity , geology , computer science , geography , telecommunications , physics , cartography , optics , aerospace engineering , engineering
Complex terrain poses challenges to the ground-based radar quantitative precipitation estimation (QPE) because of partial or total blockages of radar beams in the lower tilts. Reflectivities from higher tilts are often used in the QPE under these circumstances and biases are then introduced due to vertical variations of reflectivity. The spaceborne Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite can provide good measurements of the vertical structure of reflectivity even in complex terrain, but the poor temporal resolution of TRMM PR data limits their usefulness in real-time QPE. This study proposes a novel vertical profile of reflectivity (VPR) correction approach to enhance ground radar–based QPEs in complex terrain by integrating the spaceborne radar observations. In the current study, climatological relationships between VPRs from an S-band Doppler weather radar located on the east coast of Taiwan and the TRMM PR are developed using an artificial neural network (ANN). When a lower tilt of the ground radar is blocked, higher-tilt reflectivity data are corrected with the trained ANN and then applied in the rainfall estimation. The proposed algorithm was evaluated with three typhoon precipitation events, and its preliminary performance was evaluated and analyzed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here