
The Heated Condensation Framework. Part I: Description and Southern Great Plains Case Study
Author(s) -
Ahmed B. Tawfik,
Paul A. Dirmeyer,
Joseph A. Santanello
Publication year - 2015
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-14-0117.1
Subject(s) - convection , convective inhibition , convective available potential energy , environmental science , context (archaeology) , free convective layer , atmosphere (unit) , climatology , latent heat , atmospheric sciences , climate model , lapse rate , meteorology , climate change , geology , physics , natural convection , combined forced and natural convection , oceanography , paleontology
This study extends the heated condensation framework (HCF) presented in Tawfik and Dirmeyer to include variables for describing the convective background state of the atmosphere used to quantify the contribution of the atmosphere to convective initiation within the context of land–atmosphere coupling. In particular, the ability for the full suite of HCF variables to 1) quantify the amount of latent and sensible heat energy necessary for convective initiation, 2) identify the transition from moistening advantage to boundary layer growth advantage, 3) identify locally originating convection, and 4) compare models and observations, directly highlighting biases in the convective state, is demonstrated. These capabilities are illustrated for a clear-sky and convectively active day over the Atmospheric Radiation Measurement Program Southern Great Plains central station using observations, the Rapid Update Cycle (RUC) operational model, and the North American Regional Reanalysis (NARR). The clear-sky day had a higher and unattainable convective threshold, making convective initiation unlikely. The convectively active day had a lower threshold that was attained by midafternoon, reflecting local convective triggering. Compared to observations, RUC tended to have the most difficulty representing the convective state and captured the threshold for the clear-sky case only because of compensating biases in the moisture and temperature profiles. Despite capturing the observed moisture profile very well, a stronger surface inversion in NARR returned overestimates in the convective threshold. The companion paper applies the HCF variables introduced here across the continental United States to examine the climatological behavior of convective initiation and local land–atmosphere coupling.