
Towards Subdaily Rainfall Disaggregation via Clausius–Clapeyron
Author(s) -
Gerd Bürger,
Maik Heistermann,
Axel Bronstert
Publication year - 2014
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-13-0161.1
Subject(s) - precipitation , multiplicative function , scaling , term (time) , environmental science , calibration , cascade , exponential function , computer science , meteorology , mathematics , physics , statistics , chemistry , mathematical analysis , geometry , chromatography , quantum mechanics
Two lines of research are combined in this study: first, the development of tools for the temporal disaggregation of precipitation, and second, some newer results on the exponential scaling of heavy short-term precipitation with temperature, roughly following the Clausius–Clapeyron (CC) relation. Having no extra temperature dependence, the traditional disaggregation schemes are shown to lack the crucial CC-type temperature dependence. The authors introduce a proof-of-concept adjustment of an existing disaggregation tool, the multiplicative cascade model of Olsson, and show that, in principal, it is possible to include temperature dependence in the disaggregation step, resulting in a fairly realistic temperature dependence of the CC type. They conclude by outlining the main calibration steps necessary to develop a full-fledged CC disaggregation scheme and discuss possible applications.