
Physical Mechanisms Related to Climate-Induced Drying of Two Semiarid Watersheds in the Southwestern United States
Author(s) -
S. Rajagopal,
Francina Domínguez,
Hoshin Gupta,
P. A. Troch,
Christopher L. Castro
Publication year - 2014
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-13-0106.1
Subject(s) - coupled model intercomparison project , environmental science , climate change , precipitation , climatology , climate model , gcm transcription factors , snow , water balance , streamflow , water resources , drainage basin , hydrology (agriculture) , general circulation model , meteorology , geography , geology , ecology , oceanography , geotechnical engineering , cartography , biology
Water managers across the United States face the need to make informed policy decisions regarding long-term impacts of climate change on water resources. To provide a scientifically informed basis for this, the evolution of important components of the basin-scale water balance through the end of the twenty-first century is estimated. Bias-corrected and spatially downscaled climate projections, from phase 3 of the Coupled Model Intercomparison Project (CMIP3) of the World Climate Research Programme, were used to drive a spatially distributed Variable Infiltration Capacity (VIC) model of hydrologic processes in the Salt–Verde basin in the southwestern United States. From the suite of CMIP3 models, the authors select a five-model subset, including three that best reproduce the historical climatology for the study region, plus two others to represent wetter and drier than model average conditions, so as to represent the range of GCM prediction uncertainty. For each GCM, data for three emission scenarios (A1B, A2, and B1) were used to drive the hydrologic model into the future. The projections of this model ensemble indicate a statistically significant 25% decrease in streamflow by the end of the twenty-first century. The primary cause for this change is due to projected decreases in winter precipitation accompanied by significant (temperature driven) reductions in storage of snow and increased winter evaporation. The results show that water management in central Arizona is highly likely to be impacted by changes in regional climate.