
Decomposition of Uncertainties between Coarse MM5–Noah-Simulated and Fine ASAR-Retrieved Soil Moisture over Central Tibet
Author(s) -
R. van der Velde,
Mhd. Suhyb Salama,
M.D. van Helvoirt,
Zhongbo Su,
Yaoming Ma
Publication year - 2012
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-11-0133.1
Subject(s) - mm5 , environmental science , data assimilation , mesoscale meteorology , water content , meteorology , scale (ratio) , standard deviation , remote sensing , climatology , atmospheric sciences , geology , mathematics , statistics , geography , geotechnical engineering , cartography
Understanding the sources of uncertainty that cause deviations between simulated and satellite-observed states can facilitate optimal usage of these products via data assimilation or calibration techniques. A method is presented for separating uncertainties following from (i) scale differences between model grid and satellite footprint, (ii) residuals inherent to imperfect model and retrieval applications, and (iii) biases in the climatologies of simulations and retrievals. The method is applied to coarse (10 km) soil moisture simulations by the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)–Noah regional climate model and 2.5 years of high-resolution (100 m) retrievals from the Advanced Synthetic Aperture Radar (ASAR) data collected over central Tibet. Suppression of the bias is performed via cumulative distribution function (CDF) matching. The other deviations are separated by taking the variance of the ASAR soil moisture at the coarse MM5 model grid as measure for the deviations caused by scale differences. Via decomposition of the uncertainty sources it is shown that the bias and the spatial-scale difference explain the majority (>70%) of the deviations between the two products, whereas the contribution of model–observation residuals is less than 30% on a monthly basis. Consequently, this study demonstrates that accounting for uncertainties caused by bias as well as spatial-scale difference is imperative for meaningful assimilation of high-resolution soil moisture products. On the other hand, the large uncertainties following from spatial-scale differences suggests that high-resolution soil moisture products have a potential of providing observation-based input for the subgrid spatial variability parameterizations within large-scale models.