z-logo
open-access-imgOpen Access
Snow–Atmosphere Coupling Strength. Part I: Effect of Model Biases
Author(s) -
Li Xu,
Paul A. Dirmeyer
Publication year - 2013
Publication title -
journal of hydrometeorology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.733
H-Index - 123
eISSN - 1525-755X
pISSN - 1525-7541
DOI - 10.1175/jhm-d-11-0102.1
Subject(s) - snow , environmental science , atmosphere (unit) , atmospheric sciences , snowmelt , northern hemisphere , climatology , troposphere , snow field , climate model , atmospheric model , precipitation , snowpack , climate change , meteorology , geology , snow cover , geography , oceanography
Snow–atmosphere coupling strength, the degree to which the atmosphere (temperature and precipitation) responds to underlying snow anomalies, is investigated using the Community Climate System Model (CCSM) with realistic snow information obtained from satellite and data assimilation. The coupling strength is quantified using seasonal simulations initialized in late boreal winter with realistic initial snow states or forced with realistic large-scale snow anomalies, including both snow cover fraction observed by remote sensing and snow water equivalent from land data assimilation. Errors due to deficiencies in the land model snow scheme and precipitation biases in the atmospheric model are mitigated by prescribing realistic snow states. The spatial and temporal distributions of strong snow–atmosphere coupling in this model are revealed to track the continental snow cover edge poleward during the ablation period in spring, with secondary maxima after snowmelt. Compared with prescribed “perfect” snow simulations, the free-running CCSM captures major regions of strong snow–atmosphere coupling strength, with only minor departures in magnitude, but showing uneven biases over the Northern Hemisphere. Signals of strong coupling to air temperature are found to propagate vertically into the troposphere, at least up to 500 hPa over the coupling “cold spots.” The main mechanism for this vertical propagation is found to be longwave radiation and condensation heating.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here