z-logo
open-access-imgOpen Access
An Examination of Precipitation in Observations and Model Forecasts during NAME with Emphasis on the Diurnal Cycle
Author(s) -
John E. Janowiak,
Valery J. Dagostaro,
Ver E. Kousky,
R. Joyce
Publication year - 2007
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli4084.1
Subject(s) - diurnal cycle , precipitation , climatology , environmental science , rain gauge , monsoon , meteorology , annual cycle , climate model , atmospheric sciences , climate change , geography , geology , oceanography
Summertime rainfall over the United States and Mexico is examined and is compared with forecasts from operational numerical prediction models. In particular, the distribution of rainfall amounts is examined and the diurnal cycle of rainfall is investigated and compared with the model forecasts. This study focuses on a 35-day period (12 July–15 August 2004) that occurred amid the North American Monsoon Experiment (NAME) field campaign. Three-hour precipitation forecasts from the numerical models were validated against satellite-derived estimates of rainfall that were adjusted by daily rain gauge data to remove bias from the remotely sensed estimates. The model forecasts that are evaluated are for the 36–60-h period after the model initial run time so that the effects of updated observational data are reduced substantially and a more direct evaluation of the model precipitation parameterization can be accomplished. The main findings of this study show that the effective spatial resolution of the model-generated precipitation is considerably more coarse than the native model resolution. On a national scale, the models overforecast the frequency of rainfall events in the 1–75 mm day−1 range and underforecast heavy events (>85 mm day−1). The models also have a diurnal cycle that peaks 3–6 h earlier than is observed over portions of the eastern United States and the NAME tier-1 region. Time series and harmonic analysis are used to identify where the models perform well and poorly in characterizing the amplitude and phase of the diurnal cycle of precipitation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here