
Projection and Analysis of Extreme Wave Climate
Author(s) -
Sofía Caires,
Val R. Swail,
Xiaolan L. Wang
Publication year - 2006
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli3918.1
Subject(s) - climatology , extreme value theory , forcing (mathematics) , anomaly (physics) , poisson distribution , projection (relational algebra) , environmental science , mathematics , poisson regression , meteorology , statistics , geology , geography , physics , population , demography , algorithm , sociology , condensed matter physics
The nonhomogeneous Poisson process is used to model extreme values of the 40-yr ECMWF Re-Analysis (ERA-40) significant wave height. The parameters of the model are expressed as functions of the seasonal mean sea level pressure anomaly and seasonal squared sea level pressure gradient index. Using projections of the sea level pressure under three different forcing scenarios by the Canadian coupled climate model, projections of the parameters of the nonhomogeneous Poisson process are made, trends in these projections are determined, return-value estimates of significant wave height up to the end of the twenty-first century are projected, and their uncertainties are assessed. The uncertainty of estimates associated with the nonhomogeneous Poisson process estimates is studied and compared with the homologous estimates obtained using a nonstationary generalized extreme value model.