Instantaneous Wavelet Energetic Transfers between Atmospheric Blocking and Local Eddies
Author(s) -
A. Fournier
Publication year - 2005
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli3381.1
Subject(s) - wavelet , eddy , blocking (statistics) , wavenumber , mathematics , barotropic fluid , geology , computer science , meteorology , climatology , turbulence , statistics , physics , artificial intelligence , optics
A new wavelet energetics technique, based on best-shift orthonormal wavelet analysis (OWA) of an instantaneous synoptic map, is constructed for diagnosing nonlinear kinetic energy (KE) transfers in five observed blocking cases. At least 90% of the longitudinal variance of time and latitude band mean 50-kPa geopotential is reconstructed by only two wavelets using best shift. This superior efficiency to the standard OWAs persists for time-evolving structures. The cases comprise two categories, respectively dominated by zonal-wavenumber sets {1} and {1, 2}. Further OWA of instantaneous residual nonblocking structures, combined with new “nearness” criteria, yields three more orthogonal components, representing smaller-scale eddies near the block (upstream and downstream) and distant structures. This decomposition fulfills a vision expressed to the author by Saltzman. Such a decomposition is not obtainable by simple Fourier analysis. Eddy patterns apparent in the components’ contours suggest inferring geostrophic energetic interactions, but the component Rossby numbers may be too large to support the inference. However, a new result enabled by this method is the instantaneous attribution of blocking strain-field effects to particular energetically interactive eddies, consistent with Shutts’ hypothesis. Such attribution was only possible before in simplified models or in a time-average sense. In four of five blocks, the upstream eddies feed KE to the block, which in turn, in three of four cases, transmits KE to the downstream eddies. The small case size precludes statistically significant conclusions. The appendixes link low-order blocking structure and dynamics to some wavelet design principles and propose a new interaction diagnosis, similar to E-vector analysis, but instantaneous.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom