z-logo
open-access-imgOpen Access
Combined Role of High- and Low-Frequency Processes of Equatorial Zonal Transport in Terminating an ENSO Event
Author(s) -
HanChing Chen,
C.-H. Sui,
YuHeng Tseng,
Bohua Huang
Publication year - 2018
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-17-0329.1
Subject(s) - kelvin wave , thermocline , equatorial waves , geology , rossby wave , equator , climatology , downwelling , upwelling , geophysics , atmospheric sciences , oceanography , latitude , geodesy
This study investigates the sudden reversal of anomalous zonal equatorial transport above thermocline at the peak phase of ENSO. The oceanic processes associated with zonal transport are separated into low-frequency ENSO cycle and high-frequency oceanic wave processes. Both processes can generate a reversal of equatorial zonal current at the ENSO peak phase, which is a trigger for the rapid termination of ENSO events. For the low-frequency process, zonal transport exhibits slower and basinwide evolution. During the developing phase of El Niño (La Niña), eastward (westward) transport prevails in the central-eastern Pacific, which enhances ENSO. At the peak of ENSO, a basinwide reversal of the zonal transport resulting from the recharge–discharge process occurs and weakens the existing SST anomalies. High-frequency zonal transport presents clear eastward propagation related to Kelvin wave propagation at the equator, reflection at the eastern boundary, and the westward propagating Rossby waves. The major westerly wind bursts (easterly wind surges) occur in late boreal summer and fall with coincident downwelling (upwelling) Kelvin waves for El Niño (La Niña) events. After the peak of El Niño (La Niña), Kelvin waves reach the eastern boundary in boreal winter and reflect as off-equatorial Rossby waves; then, the zonal transport switches from eastward (westward) to westward (eastward). The high-frequency zonal transport can be represented by equatorial wave dynamics captured by the first three EOFs based on the high-pass-filtered equatorial thermocline. The transport anomaly during the decaying phase is dominated by the low-frequency process in El Niño. However, the transport anomaly is caused by both low- and high-frequency processes during La Niña.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here