Open Access
Tropical Ocean Contributions to California’s Surprisingly Dry El Niño of 2015/16
Author(s) -
Nicholas Siler,
Yu Kosaka,
ShangPing Xie,
Xichen Li
Publication year - 2017
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-17-0177.1
Subject(s) - climatology , precipitation , sea surface temperature , subtropics , environmental science , subtropical ridge , forcing (mathematics) , atmospheric sciences , geology , geography , meteorology , fishery , biology
The major El Niño of 2015/16 brought significantly less precipitation to California than previous events of comparable strength, much to the disappointment of residents suffering through the state’s fourth consecutive year of severe drought. Here, California’s weak precipitation in 2015/16 relative to previous major El Niño events is investigated within a 40-member ensemble of atmosphere-only simulations run with historical sea surface temperatures (SSTs) and constant radiative forcing. The simulations reveal significant differences in both California precipitation and the large-scale atmospheric circulation between 2015/16 and previous strong El Niño events, which are similar to (albeit weaker than) the differences found in observations. Principal component analysis indicates that these ensemble-mean differences were likely related to a pattern of tropical SST variability with a strong signal in the Indian Ocean and western Pacific and a weaker signal in the eastern equatorial Pacific and subtropical North Atlantic. This SST pattern was missed by the majority of forecast models, which could partly explain their erroneous predictions of above-average precipitation in California in 2015/16.