
Potential Large-Scale Forcing Mechanisms Driving Enhanced North Atlantic Tropical Cyclone Activity since the Mid-1990s
Author(s) -
Haikun Zhao,
Xingyi Duan,
G. B. Raga,
Feng Sun
Publication year - 2018
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-17-0016.1
Subject(s) - tropical cyclone , climatology , wind shear , westerlies , forcing (mathematics) , environmental science , sea surface temperature , tropical cyclogenesis , african easterly jet , atlantic hurricane , vorticity , atmospheric sciences , cyclone (programming language) , geology , oceanography , wind speed , tropical wave , geography , meteorology , vortex , field programmable gate array , computer science , computer hardware
A significant increase of tropical cyclone (TC) frequency is observed over the North Atlantic (NATL) basin during the recent decades (1995–2014). In this study, the changes in large-scale controls of the NATL TC activity are compared between two periods, one before and one since 1995, when a regime change is observed. The results herein suggest that the significantly enhanced NATL TC frequency is related mainly to the combined effect of changes in the magnitudes of large-scale atmospheric and oceanic factors and their association with TC frequency. Interdecadal changes in the role of vertical wind shear and local sea surface temperatures (SSTs) over the NATL appear to be two important contributors to the recent increase of NATL TC frequency. Low-level vorticity plays a relatively weak role in the recent increase of TC frequency. These changes in the role of large-scale factors largely depend on interdecadal changes of tropical SST anomalies (SSTAs). Enhanced low-level westerlies to the east of the positive SSTAs have been observed over the tropical Atlantic since 1995, with a pattern nearly opposite to that seen before 1995. Moreover, the large-scale contributors to the NATL TC frequency increase since 1995 are likely related to both local and remote SSTAs. Quantification of the impacts of local and remote SSTAs on the increase of TC frequency over the NATL basin and the physical mechanisms require numerical simulations and further observational analyses.