
Synoptic Conditions, Clouds, and Sea Ice Melt Onset in the Beaufort and Chukchi Seasonal Ice Zone
Author(s) -
Zheng Liu,
Axel Schweiger
Publication year - 2017
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-16-0887.1
Subject(s) - climatology , advection , environmental science , sea ice , atmospheric sciences , synoptic scale meteorology , troposphere , precipitable water , arctic ice pack , geology , meteorology , precipitation , geography , physics , thermodynamics
Cloud response to synoptic conditions over the Beaufort and Chukchi seasonal ice zone is examined. Four synoptic states with distinct thermodynamic and dynamic signatures are identified using ERA-Interim reanalysis data from 2000 to 2014. CloudSat and CALIPSO observations suggest control of clouds by synoptic states. Warm continental air advection is associated with the fewest low-level clouds, while cold air advection generates the most low-level clouds. Low-level clouds are related to lower-tropospheric stability and both are regulated by synoptic conditions. High-level clouds are associated with humidity and vertical motions in the upper atmosphere. Observed cloud vertical and spatial variability is reproduced well in ERA-Interim, but winter low-level cloud fraction is overestimated. This suggests that synoptic conditions constrain the spatial extent of clouds through the atmospheric structure, while the parameterizations for cloud microphysics and boundary layer physics are critical for the life cycle of clouds in numerical models. Sea ice melt onset is related to synoptic conditions. Melt onsets occur more frequently and earlier with warm air advection. Synoptic conditions with the highest temperatures and precipitable water are most favorable for melt onsets even though fewer low-level clouds are associated with these conditions.