
The South Atlantic Subtropical High: Climatology and Interannual Variability
Author(s) -
Xiaoming Sun,
Kerry H. Cook,
Edward K. Vizy
Publication year - 2017
Publication title -
journal of climate
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.315
H-Index - 287
eISSN - 1520-0442
pISSN - 0894-8755
DOI - 10.1175/jcli-d-16-0705.1
Subject(s) - climatology , anticyclone , zonal and meridional , equator , subtropics , forcing (mathematics) , annual cycle , geology , westerlies , environmental science , latitude , geodesy , fishery , biology
ERA-Interim and JRA-55 reanalysis products are analyzed to document the annual cycle of the South Atlantic subtropical high (SASH) and examine how its interannual variability relates to regional and large-scale climate variability. The annual cycle of the SASH is found to have two peaks in both intensity and size. The SASH is strongest and largest during the solstitial months when its center is either closest to the equator and on the western side of the South Atlantic basin during austral winter or farthest poleward and in the center of the basin in late austral summer. Although interannual variations in the SASH’s position are larger in the zonal direction, the intensity of the high decreases when it is positioned to the north. This relationship is statistically significant in every month. Seasonal composites and EOF analysis indicate that meridional changes in the position of the SASH dominate interannual variations in austral summer. In particular, the anticyclone tends to be displaced poleward in La Niña years when the southern annular mode (SAM) is in its positive phase and vice versa. Wave activity flux vectors suggest that ENSO-related convective anomalies located in the central-eastern tropical Pacific act as a remote forcing for the meridional variability of the summertime SASH. In southern winter, multiple processes operate in concert to induce interannual variability, and none of them appears to dominate like ENSO does during the summer.